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The configurational characteristics are considered for a planar stationary tem- 
perature pattern induced by a mutually screened system of small heating and 
cooling components. 

The two-dimensional stationary temperature distribution within a body can [i, 2] be de- 
scribed by the complex potential w(z) = u(x, y) + iv(x, y), where z = x + iy, u(x, y) is tem- 
perature; the vector U = -~gradu =wae'(z) (~ is thermal conductivity) is the heat-flux one. 

In the local representation of the complex potential 

w (z) = - -  q (2~• In (z - -  a) + [ . . .  -k c_1 (z - -  a) -i  -k c0 -k cl (z - -  a) + . . . ]  (1)  

t h e  t e r m  - q ( 2 ~ ) - q n ( z - - a )  1 d e f i n e s  a s o u r c e  ( a ;  q) a t  p o i n t  a o f  o u t p u t  q ,  w h i l e  c _ l ( z - a )  - x  
is a doublet, with the other negative powers in the Lorant expansion being higher multiplets. 

Let the stationary temperature distribution in the plane be maintained by a finite sys- 
tem of sources and sinks split up into nonintersecting groups by assignment to the complete 
set of all different power outputs {qj}. Each qj is put into correspondence with Pj(z), the 
generating polynomial for the group. "The roots are the complex coordinates of all the sources 
of output qj. The complex potential for such a system is 

w (z) = (2n• -i  ~ ( - - ~ )  In Pj (z). 
(2 ) 

i 

We e s t i m a t e  t h e  c o n f i g u r a t i o n  c h a r a c t e r i s t i c s  f o r  t h i s  s y s t e m  w i t h  c e r t a i n  m a t c h e d  c o n s t r a i n t s  
on t h e  c o m p o n e n t s .  

We r e p r e s e n t  t h e  h e a t - f l u x  v e c t o r  i n  t h e  r e g i o n  o f  e a c h  s i n g u l a r i t y  z k a s  

Uh = Uo,h + 0~ ,  ( 3 )  

where Uo,k is the inherent heat flux from the singularity and Uk is that induced by all the 
other singularities (incoming flux). 

It is evident that 

(zh) = - -  (2n) -~ 2 "  qj p~ (zh) , p ,  (z )=  d p (z), (4) Oh 
j Pj (zh)  . ~  �9 �9 

where the prime to the summation means that the singular term is excluded in expanding the 
right side of (4) as simple fractions. 

We consider this singularity system with the following constraints on the regularized 
heat flux Uk: 

Uk (zk) = bh (5) 

(the given b k prescribe the modes of thermal action of the entire system on the components, 
i.e., we arrive at an interaction problem). In [3-5], a special method was developed for 
examining a nonlinear algebraic-equation system of the type of (5). We give some results 
based on this approach. 

I. All the b k = O. The system state is such that the incoming fluxes have minimal ther- 
mal effect on the region around each singularity. In general, each singularity acquires the 
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scope for operating under the most undistorted conditions (optimal ones). Then system (5) 
can be reduced to a differential relation for the generative polynomials Pj: 

~.~ q~ P; I-I Pm q- 2 Z q~qmP~P~ [-I Pr : O. 
j m ~ l  m , j ;m~f  r-~j,m 

It is characteristic that this relation rigidly relates the numbers nj = deg Pj 

(Zq ,n , )2=~q~n , ,  
i i 

( 6 )  

(7) 

i.e., the composition of the singularities with given outputs {qj } is in no way arbitrary. 

For example, if the system contains only sources +q (generative polynomial ~, degP = n) 
and sinks --q (polynomial Q, degQ = m), the number of singularities in the system is given by 

( n - -  mp = n + m, (8)  

i.e., n and m are successive triangular numbers of the form L(L + 1)/2. 

The polynomials P and Q satisfy the bilinear equation 

P"Q -+- PQ" -- 2P'Q' = 0, ( 9 )  

when [3] P(z) and Q(z) are adjacent terms in the soluble recurrent polynomial sequence 

' Po = 1 ,  P I = z +  const, P~, P3 . . . . .  

P~+~PA,-~ --PN+,P~'~ = (2N + I) P~ .  (i0) 

Then for the • systems with regularized gradient constraint Uk(Zk) = 0 we can write the 
general representations for the complex potential 

m (z) ---- - -  (2z• q In Pm (~/PN-z (z) (ii) 

and the temperature distribution 

U = - -  (2n• - i  q Re [ln P~ (z)/P~_~ (z)]. (12) 

At large distances from allthe singularities, the system works as a singularity of out- 
put Nq, and the isotherms pass asymptotically into circles. 

II. In the system containing sources +q (polynomial P, degP = n) and sinks --2q (polyno- 
mial Q, degQ = m), b k = 0. 

The solutions to the corresponding bilinear equation 

P"O + 4PQ" _i 4P'Q' = 0 (13) 
are [5] the pairs of polynomials {PN, QN } defined from the recurrent system 

.DN+IP N - -  PN,q_IPN = (6N - -  1) Q~r 

(14) 

with the initial conditions Po = Qo = !, Px = z; N > 0) or (Po = Qo -- I, Q_, = z, N > 0); the 
two branches in the solutions in (14) correspond to two branches in the solutions to the Dio- 
phantine equation for the degrees of the polynomials: 

( n  - -  2 m )  ~ = n q5 4m. ( 1 5 )  

III. All b k = b ~ 0. This case is naturally interpreted as the superposition of a con- 
stant heat flux on the entire system. AgainSt the background of such superposition, the reg- 
ularized interaction between the singularities may be considered as a zero one. However, the 
form of (6) is substantially altered, and we have 

qi PI [-1Pm + 2 ~ q~q,nP;P;~ 1-I P~ = 4~-b ~t q~PJ 1"1 Pro. (16) i mr m,j;rn#:j r~j,ra j my~j 
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For example, the modification of (9) is 

P~Q q- PQ~ -- 2P'Q' = 4~-b(P'Q -- PQ'). (17) 

The solutions to this equation are the pairs of polynomials {P~, Q~}, degP~ = degQ~=N(N~ I)/2 
[5].  . . . .  

IV. The method can be extended to multiplets [4]. One can for example write out the 
solution for an oriented doublet system. With U k = O, this is closely related to the poly- 
nomial class of (14). 

In general, the mathematical techniques needed to solve this class of problems corre- 
spond to a series of mathematical schemes in the theory of nonlinear waves and solutions. 
This feature is evidently related to some deeper unity in all integrable nonlinear problems 
in transport theory for continuous media and for interactions in discrete systems. 

V. There are papers in which it is shown that one can replace the extended thermal in- 
homogeneities by point singularities in planar potential theory for a certain class of ther- 
mal problems. In [6] this was done by considering the corresponding linked asymptotic expan- 
sions for a certain system of hot and cold small inclusions. 

We have here demonstrated an exact technique that may be of value in analyzing and plan- 
ning such reductions for two-dimensional thermal conduction problems (thermoelasticity and 
thermal stability) or problems on diffusion in inhomogeneous media. 
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